Received: July 8, 1981

PREPARATION OF PURE SULFUR TETRAFLUORIDE FOR SYNTHESIS OF ISOTOPICALLY SUBSTITUTED COMPOUNDS*

L.B. ASPREY and E.M. FOLTYN

Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545 (U.S.A.)

SUMMARY

A method is described for the small-scale synthesis of SF_4 from S, Cl₂, and UF₆, which gives a product a very high purity.

INTRODUCTION

Attempts to prepare sulfur tetrafluoride date as far back as 1905 [1], but for several years workers succeeded only in making complex mixtures of uncertain composition. Then, in 1950, Silvey and Cady [2] isolated SF_4 from the products of decomposition of CF_3SF_5 by electrical discharge, and a few years later Schmidt [3] made SF_4 by heating copper turnings with the solid formed by reaction of IF_5 and S_2Br_2 . Tullock, et al. [4] later showed that Schmidt's reaction proceeded at 200°C without the use of Cu, giving a yield of 88%. The same authors reported several other methods of SF_4 synthesis, utilizing SCl_2 , metal fluorides (primarily NaF), and Cl_2 ; or S and IF_5 . Although Tullock recorded substantial yields (near 100% in some cases), the amounts of impurities were large, in excess of 5-10%. Recently, Aubert, et al. [5] succeeded in making SF_4 from S and UF_6 , but S_2F_2 constituted 15% of the product.

The most common impurity in SF₄ preparations is SOF₂, which is formed rapidly in the presence of traces of water. A somewhat complicated method for removal of SOF₂, involving formation of SF₄·BF₃ followed by heating with SeF₄ to yield SeF₄·BF₃ and SF₄ is described by Bartlett and Robinson [6,7]. We wished to develop a simpler method for synthesizing high purity SF₄ in reasonable yields, so that we could prepare S¹⁸OF₂ and ³⁴S¹⁸OF₂ using SF₄ and H₂¹⁸O or ³⁴SF₄ and H₂¹⁸O. We found that SCl₂ is

^{*}This work performed under the auspices of the U.S. Department of Energy.

readily fluorinated by UF_6 giving a product >96% SF_4 with SOF_2 the only impurity. The reactions proceed quickly at 92°C and result in yields of 70% or better.

RESULTS AND DISCUSSION

Sulfur can be directly fluorinated with UF₆ to form SF₄, but the reaction is very slow at temperatures up to at least 130°C; it is somewhat faster if the reaction vessel is pressurized with N₂ but, even so, repeated heating with subsequent removal of product is required for quantitative yields. SCl₂ is an easily made and highly reactive intermediate, formed quickly at 92°C by mixing S and Cl₂.

$$S + CI_2 = SCI_2 \tag{1}$$

Any excess Cl_2 may be left in the reaction vessel during fluorination, or removed, depending on the pressure constraints of the apparatus. The reddish-orange color of the mixture formed in this step indicates the presence of S_2Cl_2 as well as SCl_2 and unreacted sulfur.

SCl₂ reacts with UF_6 according to the following equation:

$$SC1_2 + 4UF_6 = SF_4 + C1_2 + 4UF_5$$
 (2)

Excess UF₆ was condensed onto SCl₂ at liquid N₂ temperature. As the tube was warmed, white solid UF₆ began to turn light green and the volume in the tube above the solid became filled with yellow Cl₂ vapor. The progress of the reaction was monitored by observing the increase in pressure as gaseous products were formed. After constant pressure was reached, the vessel was cooled to -98°C and volatile SF₄ and Cl₂ condensed into another container where chlorine was quantitatively removed by reaction with Hg.

Analysis of the solid remaining in the reaction vessel showed unreacted S and UF₆ and a green powder which, by x-ray powder diffraction, was shown to be UF₅. Mass spectra of the gaseous product indicated SF₄ plus traces of SOF₂; absorbances at 1339 and 1329 cm⁻¹ of the infrared spectrum were used to calculate the amount of SOF₂ impurity. Yields were in the range 69-78% based on S, with SOF₂ concentrations of 3.5 to 6%. There was no evidence of any gaseous species other than SF₄ and SOF₂.

Formation of extraneous thionyl fluoride was held to a minimum by treating the reaction apparatus with UF_{6} which removes H_{2}O as follows:

$$UF_6 + H_2 0 = 2HF + U0F_4$$
 (3)

or

$$UF_6 + 2H_20 = 4HF + U0_2F_2$$
 (4)

278

Since sulfur does not react appreciably with UF_6 at room temperature, it was possible to treat the reaction vessel containing the starting material, as well as the remainder of the vacuum line, to rid the system of nearly all water. The line was then evacuated overnight to remove HF before proceeding with the synthesis.

EXPERIMENTAL

All reactions were carried out in a stainless steel vacuum line. Sulfur was sublimed <u>in vacuo</u> at 92°C. Cl_2 (Liquid Carbonic) was purified by condensing at -78°C and pumping off volatile species. UF₆ was supplied by Oak Ridge National Laboratory and was purified by trap to trap distillation with a trace of HF the only impurity remaining. Infrared spectra were recorded on a Perkin Elmer Model 180 Spectrophotometer and mass spectra were determined using a Bendix MA-2 TOF Mass Spectrometer. A standard 114.6 mm Debye-Scherrer powder camera with Cu radiation was used for powder patterns.

Approximately 1 to 2.5 mmol of sublimed S was placed in a Kel-F, Monel, or Ni reaction vessel, capacity $\sim 30 \text{m}$. The bottom one inch of the tube was heated in a boiling water bath (92°C) long enough to sublime the sulfur onto the sides of the vessel, ~ 1 to $2\frac{1}{2}$ hr. The entire vacuum line, including all surfaces with which the product would come into contact, was treated with 50-80 torr UF₆ for several min, then evacuated overnight.

 Cl_2 was condensed into the reaction vessel in quantities $\sim 2 \times the$ amount of S on a mole basis, then heated at 92°C until the pressure dropped to its lowest value. A reddish-orange mixture resulted. Excess chlorine was removed by immersing the vessel in a methanol-liquid nitrogen slush bath at -98°C and evacuating.

 UF_6 was condensed into the tube in quantities five to ten times the stoichiometric amount required for fluorination. The vessel was again heated at 92°C, until the pressure reached a maximum.

To remove the chlorine liberated during this step, the volatiles at -98° C (consisting of SF₄ and Cl₂) were then condensed into a dry, evacuated Monel vessel containing Hg. The tube was left at room temperature overnight to ensure complete reaction with Cl₂, though this length of time is probably unnecessary. The remaining SF₄ was analyzed for impurities by IR and mass spectrometry.

REFERENCES

1 O. Ruff and C. Thiel, Ber. dtsch. Chem. Ges. <u>38</u> (1905) 549.

2 G.A. Silvey and G.H. Cady, J. Am. Chem. Soc. 72 (1950) 3624.

3 W. Schmidt, Monatsh. Chem. <u>85</u> (1954) 452.

- 4 C.W. Tullock, F.S. Fawcett, W.C. Smith, and D.D. Coffman, J. Am. Chem. Soc. 82 (1960) 539.
- 5 J. Aubert, B. Cochet-Muchy, and J.P. Cuer, Fr. patent 1,586,833 (1968).
- 6 N. Bartlett and P.L. Robinson, Proc. Chem. Soc., (1957) 230.
- 7 N. Bartlett and P.L. Robinson, J. Chem. Soc., (1961) 3417.

280